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Abstract. The paper analyses some time-dependent and steady-state properties of coupled 
photons and electrons in two-level systems. by taking into consideration the radiative 
transitionsand photondissipation. The main assumptionis the slaving principle for adiabatic 
elimination of the electrons. A master equation is derived for the photon number. The 
stability of the photon population is studied and the laser threshold concentration of the 
upper-level electrons determined. A first-order phase transition that occurs at threshold is 
estabtished explicitly, and it is shown that the transition requires the neglect of the spon- 
taneous emission and of the ambient influence. The steady-state photon distribution is not 
Poissonian and is characterized by large fluctuations. Fluctuations become negligible when 
the stimulated emission is zero. The steady-state distribution can obey the BoseEinstein 
law with a non-zero chemical potential. The equation of state of the photon population is 
derived. When dissipation is weak and dilution increases, the equation of state i s  similar to 
that of a degenerate Bose gas in equilibrium. 

1. Introduction 

A well known result shows that black-body radiation has a zero chemical potential. In 
this case Planck's law gives the photon distribution. However, the situation is different 
when photons are interacting with an electronic system in quasi-equilibrium. So, in the 
case of photons coupled with a two-level electron system, Landsberg (1981) proved that 
the quasi-Fermi levels of the electron distribution can superimpose themselves on the 
radiation so as to turn it into a non-equilibrium steady-state Planck-type distribution 
which has acquired what appears to be a non-zero chemical potential. There is a fair 
amount of literature on this non-equilibrium steady-state distribution (Chel'tzov 1971, 
Haught 1984, Henry 1980, Ruppel and Wurfel 1980, Wurfel and Ruppel 1980, 1981, 
1985, Wurfell982). 

The non-equilibrium kinetics of coupled photons and electrons were studied in more 
detail by Scholl and Landsberg (1983). These workers approached the problem for the 
case of a two-level system with strongly interactiog atoms, e.g. a semiconductor in which 
the electrons are not localized at individual atoms. Their object was to develop a theory 
that covers the whole range from thermal equilibrium to the laser regime. With this 
purpose, Scholl and Landsberg proposed a model which took into consideration 

(i) the radiative electronic transitions, 
(U) the non-radiative electronic excitations, 
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(iii) the non-radiative electronic recombinations and 
(iv) the photon dissipation. 

By using the model they established the coupled rate equations for the average 
numbers of photons and upper-level electrons, j? and E, respectively: 

(1) 

U- i ue= (2 )  

fi = Umd - Udlsr 

h = - Urad - 

where umd, U''', uexc and udiS5 denote the transition rates of processes (1)-(4). Scholl and 
Landsberg were not able to obtain analytically the general time-dependent solution of 
the non-linear coupled equations (1) and (2). However, they assumed a separation of 
time scales that allows one to calculate the evolution of the photon distribution in time. 
Indeed, the electrons can often be considered as fast variables compared with the 
photons since for weak photon dissipation the photons relax slowly to the steady state 
(see, e.g., Scholl and Landsberg (1983) and references therein). Consequently, Scholl 
and Landsberg first considered the electrons as being in a steady state (h = 0). Then, 
they obtained from equation (2) a dependence E = E(N by determining urad, uEc and 
P. This dependence was used in (1) in order to make this equation self-consistent in 
N. As they observed, because of the dependence E = E(&') the electron number Eisstill 
varying but only as a function of j?(r), which varies slowly. They called this time vari- 
ation of r i  a pseudosteady state. Even under these simplifications, obtaining the time 
variation of N analytically is a difficult task. Scholl and Landsberg (1983) give the results 
obtained for two special cases and the so-called full steady state (k = 0; fi = 0). 

In this paper we analyse the same system of coupled photons and electrons which 
Scholl and Landsberg (1983) studied. One of the main assumptions that we accepted is 
again the hypothesis of the pseudosteady state of the upper-level electrons. However, 
our analysis is performed by neglecting the non-radiative processes. The above restric- 
tion makes it possible to develop and use a probabilistic technique based on the master 
equation method. Consequently, we obtain new results, which cannot be derived by 
using deterministic techniques, such as the method of the rate equations. 

2. Photons coupled with a two-level system of electrons 

Following Scholl and Landsberg (1983) and Landsberg (1986) we consider a pair of 
electronic energy levels E, and EJ, where E,  = E, - E, = hv > 0. Let the numbcr of 
available quantum states at these levels be N,and N,. We denote the numberof electrons 
in the upper and lower levels by n and m, respectively. Assume the total number of 
electrons 

N , = n + m  (3) 

0 S n S N, < N, + N,. (4) 

to be conserved. Physically meaningful values must clearly satisfy 

Electron transitions between the two levels determine the absorption and emission 
ofphotonsofenergy hv.  ThephotonnumberisN. Wedenotethethree typesofparticles 
by {n} ,  {m} and {N"}, respectively. 

Neglecting the non-radiative excitations and combinations, the relative population 
of the levels I and J may change because of the following processes: 
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(i) radiative transitions (absorption and spontaneous and stimulated emission) with 
transition probabilities per unit time, E,, E:P and E:,  respectively (for convenience 
later we still distinguish the three coefficients, although they are in fact identical 
(Landsberg 1986)). 

(ii) photon dissipation processes (e.g. absorption, scattering and cavity loss). 

Scattering implies the existence of 

(a)  photons of wavelength v ’  # v and 
(6) material particles other than electrons {n} and {m} 

We denote by{N,.} and { p }  the types of particles from (a)  and (6) above. Scholl and 

The processes (i) and (ii) may be formally described by 
Landsberg (1983) called the whole set of {A’”,} and { p }  particles ‘the ambient’. 

k 

P 
{P} + [N”J e {P} + IN”,} (6) 

where k is the transition probability per unit time which characterizes the photon 
dissipation process. 

The ensemble of variables determining the macroscopic state of the system that we 
study is ( N ,  n,  m). The probability that at time I the system be in a state ( N ,  n, m) will be 
denoted P ( N ,  n,  m, t ) .  We denote by w ( N ‘ ,  n ’ ,  m’; N ,  n ,  m)  the transition probability 
from state ( N ’ ,  n‘, m’)  in state ( N ,  n ,  rn). 

In the case of the electronic transition between level J and level I (absorption of a 
photon) we have 

w , ( N  + 1, n - 1, m + 1; N ,  n, m) = E , ( N  + l ) ( m  + 1)[N, - (n - l)]. (7) 

Two different situations occur in the case of the electronic transition from level I to level 
J (emission of a photon). For stimulated emission we may write 

w:(N - 1, n + 1, m - 1; N ,  n ,  m)  = E:(N - l ) ( n  + 1)[N, - (m - l)] (8) 

and for spontaneous emission we have 

w;P(N - 1, n + 1, m - 1; N ,  n, m)  = E;P(n + l)[N, - (m  - l)]. (9) 

Scholl and Landsberg (1983) took into account the photon loss fi = - k f i  in order to 
overcome the problem of an infinite number of photons at the laser threshold. We use 
the same hypothesis for the photon dissipation transition probabilities; 

M J ~ ~ ~ ( N  + 1, n, m; N ,  n, m)  = k(N + 1). (10) 

Scholl and Landsberg noted that at thermal equilibrium we need & = 0. Consequently, 
a new term of the form IT = kNo must be added. Here No is the number of photons 
in thermal equilibrium and kNo represents a radiation gain from the ambient. Again, 
we use their assumption and obtain: 

ws(N - 1, n,  m; N ,  n, m)  = W,(N,  n, m; N + 1, n,  m) = kNo. (11) 
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Now, the master equation of the processes (i) and (ii) may be written 
dP(N, n ,  m, r)/dt = w,(N + 1, n - 1 ,  m + 1; N ,  n, m)P(N + 1 ,  n - 1, m + 1 ,  t) 

- w , ( N ,  n, m; N - 1, n + 1, m - l ) P ( N ,  n,  m, t )  

+ w:'(N- 1 ,n  + 1 ,m - l ;N ,n ,m)P(N-  l , n  + 1,m - 1 , t )  

- w:(N, n, m; N + 1, n - 1, m + l ) P ( N ,  n,  m, t )  

+ wfp(N- 1 ,n  + 1 ,m - 1; N , n ,  m)P(N - l , n  + l , m  - 1, t )  

- w f ( N ,  n ,  m; N + 1, n - 1, m + l)P(N, n,  m, r) 
+ wdar(N + 1, n ,  m; N ,  n,  m)P(N + 1, n,  m, r) 
- Wdis$(N,  n, m; N - 1, n ,  m)P(N, n,  m, t )  

+ w , ( N  - l , n , m ; N , n , m ) P ( N  - l , n , m , t )  

- w , ( N ,  n ,  m; N + 1, n, m)P(N, n,  m, t ) .  (12) 
The probability P ( N ,  n ,  m, t )  depends on only three independent variables, because 

n and m are related through (3). Even in this case solving the equation (12) is a difficult 
task. Considerable simplification occurs if we assume that the electrons are in a steady 
state. In this case, n is a constant and P ( N ,  n ,  m, I) depends only on N and r. However, 
Nand n are coupled variables and the time evolution of Nmakes impossible a real steady 
state for n .  As we pointed out in section 1, the compromise of Scholl and Landsberg 
(1983) was to accept the so-called pseudosteady state of i i. Their assumption is a direct 
consequence of the slaving principle for adiabatic elimination of the electrons (Haken 
1975). The reason is that the relaxation time of photons is usually much greater than 
that of electrons (Haken 1970, p 249). Thus the electrons can follow the 'orders' of the 
photons adiabatically and n can be eliminated without increasing the degree of the time 
derivatives. The long lifetime of the photonsallows the electrons to become'slaves'. The 
pseudosteady state of ii approximates the true trajectory N(ii(t), t )  by the appropriate 
branchofthenullisoclieii = 0,i.e. b,yN(fi = 0, t )  (SchollandLandsberg1983,p 1202). 
A better approximation occurs around the full steady state ($ = 16 = 0) as the phase 
diagrams in figures 1 ,2  and 5 in the work of Scholl and Landsberg (1983) show. We may 
conclude that proper application of the slaving principle occurs in the case of the weak 
dissipation processes which may attain the full steady state. 

By using the slaving principle and equations (7)-(ll), we obtain a new form of the 
master equation (12): 

dP(N, t)/dt = A , ( N  + l ) P ( N  + 1 ,  t )  - [A2 + (A,  + A,)NIP(N, I) 

+ [A, + ( N  - l)A3]P(N - 1, t )  

A ,  = B , ( N ,  - n ) ( N ,  - n )  + k = B a p  + k 

(13) 

(14) 
where 

A Z  = B:Pn(NI - N e  + n )  + kNo = B~PLY + k N o  

A )  = B?n(Nj - N ,  + n) = 5:'n. 
(15) 

(16) 
Equation (13) is a finite-difference equation with linear coefficients. The finite- 

difference property is a result of the discreteness of the stochasticvariable-the number 
of photons-while the linearity of the coefficients is a consequence of the one-particle 
character of the relations (5) and (6). 
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3. Time-dependent photon statistics 

A study of equation (13) is performed most conveniently in the generating-function 
representation. To this end we define the generating function F(s, t) by (Bharucha-Reid 
1960, p 18) 

m 

F(s, t) = s N P ( N ,  t )  
N = O  

where Is1 s 1 in order to assure convergence. By using (17), equation (13) takes the 
following form: 

aF/af=[A,  -(A1 +A3)s+A3sZ]aF/as+A,(s-1)F. (18) 

This is a first-order equation with partial derivatives. It will be solved by taking into 
account that firstly P ( N ,  r) must be normalized and secondly at time f = 0 the number of 
the photons {Nu}  is known, say N(0). The first condition means that 

while the second implies that 

Therefore 

F(s, 0) = s" 

By using (21) we obtain the solution of equation (18) (see the appendix): 

F(s,t)=IIAl(l  AI -Adexp[ - (A3  -Adrll/{A3(1-s) 

- ( A l  -Adexp[ - (A3  - A ~ ) r l } l ~ ( ~ ) l { ( A ~  - A W I  - A d  

xexp[- (A~-Al) t l l / (A3[-A,  + ( A I  + A ~ ) ~ - A J S ~ I  

+(A: -2A,A3s+A:s2)exp[-(A3 -Al)r]}1"dA3. (22) 

Simple calculation shows that F(s, 1) verifies (19). 
The generating function can be used directly to determine the stochastic function 

P ( N ,  t) (Bharucha-Reid 1960, p. 442) by 

P(N,  r) = Pw(0, t ) / N !  N =  1,2,. .:. (23) 
This rather tedious computational task is not carried out here. Also, the generating 
function can be used to determine the mean value Nof the photon number (Bharucha- 
Reid 1960, p 440): 

N =  (JF/as)l,,l. (24) 

(25) 

From (22) and (24) we obtain 

N(t)  = IN(0) - I - Ad1 exp[(A3 - A dfl+ Az/(A I - A d .  

The time variation of the mean number of photons mainly depends on the sign of the 
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difference A3 -A, .  From (14) and (16) we see that A, - A, is the difference between 
the intensities of the stimulated emission and the absorption plus dissipation processes, 
respectively. 

Note thatA, - A I doesnotdependonspontaneousemission. Thephotonpopulation 
is stable when the absorption plus dissipation process is more intensive than the stimu- 
lated emission process (A3 - A < 0). In this case, for any initial value N(0)  (which 
includes possible fluctuations) the mean photon number has a monotonically increasing 
or decreasing time variation between N(0) and A2(A1 -A3)-, with a relaxation time 
(A, - A,)-'. The photon population is not stable when the stimulated emission is 
stronger than the absorption plus dissipation process (A, - A ,  > 0). In this case the 
mean photon number increases in time indefinitely. When the two processes have the 
same intensity (A3 - A  = 0), the photon population is at the laser threshold (SchoU 
and ',andsberg 1983) and the photon mean number diverges. Note that in this case 
the elaxation time is infinite and the photon population becomes unstable without 
oscillations in time. Consequently, the well known analogy to a phase transition applies 
(see, e.g., Haken 1975). This analogy has been studied from different viewpoints by 
many workers (see, e.g., DeGiorgio and Scully 1970, Graham and Haken 1970). 

Let us briefly analyse what implieSA, - A ,  S 0. From (14) and (16) we obtain the 
following condition: 

(B:f - B,)nZ + [B:'(N, - N , )  + B, (N,  + N , ) ] n  - B,N,N,  - k < 0. (26) 
However B:f = B ,  (Scholl and Landsberg 1983, Landsberg 1986). In this case from (26) 
we obtain a threshold condition for the excited electron concentration: 

n s N , N , / ( N ,  + N,)  + k / [B: t (NI  + N,)]  = nth + n k .  (27) 
A similar result was derived by the previously quoted workers. When n = nlh + nk we 
obtain the threshold condition for laser action. As we can see, the laser threshold 
condition applies also in the case of a non-null dissipation although the energy of the 
photon ensemble is not conserved. Consequently, there exists a fundamental difference 
between the laser and a thermodynamic system showing a phase transition. This dif- 
ference was pointed out also by other workers (see, e.g., Haken 1975, p 81). 

Equation (25) as well as all the results obtained by using the rate equation method 
(Scholl and Landsberg 1983, Landsberg 1986) show that the average value of the photon 
number cannot vanish. However, what is the probability that N = O? This can be 
determined from (Bharucha-Reid 1960, p 442) 

(28) P(0, r )  = F(0, t ) .  

By using (22) and (28) we find that 

P(O,f)= IA1{l -exp[-(A, -A,)r]}/{A, - A ,  exp[-(A, - A , ) I ] } ~ ~ ( ~ )  

x I(Al - A d  exp[- (A3 -A  ,)fl/{A exp[-(A, - Adrl -A3HAdA3. 
(29) 

The probability is non-null for both stable and unstable photon ensembles 
(A, -A3  S 0). This means that the photon population may disappear as a result of 
fluctuations. However. note that N = Oisnot an absorbingstate asspontaneousemission 
exists (A, # 0). Indeed, if we make N(0) = 0 in (29) we see that P(0, r )  # 1 for t > 0. 
The photon population reappears. The probability P(0, t )  vanishes only for A3 = A  ,, 
i.e. at the laser threshold, when compulsorily N #  0. Inthe case of unstable photon 
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populations (A ,  - A S  > 0) ,  when N increases in time, the probability P(0, r) decreases 
in time towards zero. When a stable population is considered (A,  - A ,  < 0)  the value 
of P(0, f) has the asymptotic limit: 

P(O,t-m)=Il -A3/A,IAdA3. (30) 
As we can see, the photon population can disappear even if the steady state is attained. 
Note that at steady state the probability P(0, t-+ m) does not depend on fluctuations 
(i.e. on N(0)). 

New information concerning the time properties of the photonic ensemble can be 
obtained by computing the variance Dz(N). This is a measure of the photon number 
fluctuations around its mean value fi. The variance can be obtained by (Bharucha-Reid 
1960, p 440) 

D ~ ( N ( ~ ) )  = ~ J ~ F / &  + JF/JS - (JF/JS)~/~=, .  (31) 

By using (22), (25) and (31) we find that 

D2 = f l 1  + ( A d A d f l  - N(O)[1 + (A,/A,)N(O)I exp[2(A, -A&] t > 0. 

(32) 
We see that generally D2 # i?. Consequently, the distribution P(N, t )  is not Poissonian 
and the fluctuations are not negligible compared with the average values (Nicolis and 
Prigogine 1977, p 241). Also, DZ(N(0))  = 0. This is not surprising because we accepted 
the values N(0)  as being known. 

Let us briefly analyse the particular case when N(0)  = 0, i.e. when the photon 
population disappeared. As previously has been proved, this situation is possible what- 
ever the difference between the intensity of the stimulated emission process and the 
intensity of the absorption plus dissipation process (A - A3 S c). From (32) we see that 
D z / P  = 1,’s + A3/A2. This value is finite and non-null when N-b m, i.e. near the laser 
threshold (A ,  = A,)  or, in other words, near the phase transition. We conclude that in 
this case the scales of macroscopic averages and fluctuations are not clearly separated. 
This means that the average value fi may not be representative of the system (Nicolis 
and Prigogine 1977, p 228). There is a breakdown in the laws of large numbers, i.e. the 
‘sampling’ procedure allowed by the laws of large numbers and consisting of identifying 
the arithmetic mean with the stochastic average is not entirely meaningful. 

Important non-equilibrium features of the phpton population can be demonstrated 
by studying the time variation of the ratio D 2 / N .  First, let us analyse the asymptotic 
stability of the photon population fluctuations. In the beginning we considered the 
absorption plus dissipation process to be more intensive than stimulated emission 
(A,  - A ,  < 0) .  Two subcases may be distinguished. When the initial photon population 
isN(0) > A,(A - the photon mean number decreases monotonically intime (see 
equation (25)) .  In this case, from (32) we observe that D2/i?(tz- m) < D2/N(t1 > 0). 
The fluctuations of the photon population decrease asymptotically. When the initial 
photon populationissuch that N(0)  < A2(A,  - byusingequation(2S) weseethat 
N(t)increasesin time. Now,equation(32)showsthatDZ/i?(t2+ 10) > D2/fi ( t1  > O),i.e. 
the fluctuations increase asymptotically. From ths two subcases we observe that in the 
asymptotic limit f- m both the average value N(t )  of the photon population and its 
relative fluctuation have the same time variation, but both the increase and the decrease 
in N(t) are limited by the value A2(A1 - A,)-l. Consequently, the fluctuations are also 
limited. In the asymptotic limit f+ m the photon population is stable at fluctuations. 
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If the stimulated emission is more intensive than the absorption plus dissipation 
process (A - A , > 0), we see from (32) that D2/N(r+ m) + mwhatever the initial size 
N(0)  of the photon population. Consequently, in thiscase the photon population is not 
stable at fluctuations. 

A thorough analysis, which we do not present here, shows that the time variation of 
the photon population fluctuations towards the asymptotic limit (in the case when 
A3 - A ,  < 0) is either monotonic or non-monotonic (with a maximum and/or a 
minimum), depending on the values of N(0). A,, A,, A, and k .  

We haveconsideredthecasewhenall theprocessses(thespontaneousandstimu1ated 
emission processes and the absorption plus dissipation processes) have comparable 
intensities. In the following we shall briefly analyse some extreme cases when one 
of these processes is negligible. First, we consider a very weak stimulated emission 
(A, = 0). From (22) we see that the generating function is not defined in this case. New 
calculations give the following expression for F(s, t):  

F(s,t)  = [ l - ( l - s ) e ~ p ( - A , ~ ) ] ~ ~ ~ - - e x p { ( A , / A ~ ) ( l  -s)[exp(-A,t)- 111. (33) 

m(r) = N(0)[1 - exp(-A,t)] + A , / A ,  (34) 

o'=&'(t)-~(O)exp(-2A,r).  (35) 

The new expressions for the mean photon number and variance are 

The photon population is globally stable, i.e. the value of E(r) is finite whatever the 
values of N(O), A ,  and A,. In the asymptotic limit f +  the mean photon number 
increases or decreases towards A2/A As we can see, the relaxation time A I' is always 
finite. Also, &'cannot diverge. Consequently, a phase transition is not possible in this 
case. From (35) we observe that in the limit t + m  the distribution P ( N , r )  is well 
approximated by a Poisson distribution. Consequently, the photon ensemble is charac- 
terized by negligible fluctuations compared with the mean photon number &', The 
photon population is stable at fluctuations. 

Second, we consider a very weak spontaneous emission and influence of the ambient 
(A2 = 0). This case was analysed also by Scholl and Landsberg (1983) by means of the 
rate equations method. New calculations performed by using the generating function 
(22) under the condition A, = 0 give the following expressions for the mean photon 
number and variance: 

&'(t) = N(0)  exp[(AZ - A ,)r ]  (36) 

o2 = fiN[(A + I - AdK1 - exp[(A3 - A I bl). (37) 
When stimulated emission is more intensive than absorption plus dissipation 
(A, - A, > 0), both the mean photon number fi(t) and the variance D'(t) increases in 
time indefinitely. Consequently, the photon population is unstable. When stimulated 
emission is weaker than absorption plus dissipation (A, - A < 0), both R(r) and D2(r) 
decrease monotonically towards zero. The photon population disappears. Moreover, 
N = 0 is an absorbing state. Indeed, in the case of Az  = 0 and N(0)  = 0 the probability 
P(0, t > 0) becomes unity (see (29)). 

When the two processes have the same intensities (A3 = 4 J,  the relaxation time 
(A3 - A ,)-' becomes infinify. Also, the mean photon number N(r) has a constant value 
duringtimeandthe fluctuationsare very large, because D'diverges. The phase transition 
analogy applies. Note that, when A, = A I and t > 0, the constant mean photon number 
&'(t) = N(0)  has a jump compared with the value R(f) corresponding to 
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A3 - A < 0. This is a characteristic of the first-order phase transition. In the same case 
thatwestudied(A2 = O),SchollandLandsberg(l983)emphasizedasecond-orderphase 
transition. However, in their model the phase transition occurs when the transition 
probabilities per unit time for non-radiative excitations and recombinations have the 
same non-zero value. This point is not accessible to our model which neglected the non- 
radiative processes. 

4. Steady-state photon statistics 

Thesteady state of the photon populationmay beobtainedin the asymptoticlimit r+ m. 

This limit is finite only when the absorption plus dissipation process is more intensive 
than stimulated emission (A3 - A < 0) (see section3). With this in mind, equation (22) 
becomes 

F(s , r -+m)=I(A,  -A3)/(A1 -A3s)lAdAx. (38) 

NS =A>/(AI -As). (39) 

The mean number of photons may be derived from (25): 

We intend to rewrite equation (39) in a more familiar form. First, we must remember 
that the electron states obey a quasi-Fermi distribution for which the chemical potential 
has been replaced by the quasichemical potential p (Landsberg 1986). We define 

q G ' ( E I -  Ej)/kBT=hv/kBT fi=(p,-pc,)/ksT=p/kBT (40) 
where ks is Boltzmann's constant. By using (40) the following result was obtained 
(Landsberg 1986): 

PI. = exp(vc - 9. (41) 

Nss = l/[f-' exp(tlc - P )  - 11 (42) 

f= (B~p+kNo/~u)/[B, + k ( N o +  1)//3+(cY/P)(B:P-B:)]. (43) 

If we use equations (14)-(16) and (41) we can rewrite equation (39) in the form 

where 

Because E ,  = E:P = BZ our equations (42) and (43) reduce to those presented by Scholl 
and Landsberg (1983) and Landsberg (1986). Moreover, if dissipation is negligible, 
thenf= 1 and NSs corresponds to a black-body distribution with an effective chemical 
potential p. Discussions on this last case can be found in the work of Landsberg (1981), 
Wurfel and Ruppel(1981), Wurfel(l982) and Landsberg (1986). 

When the influence of the ambient is strong (WO+ m) we see that 

f+  [ (No  + 1)/Nol(ff/P). (44) 
Consequently, from (42) we obtain Ns+ NO. In other words, the photon population 
attained thermal equilibrium. 

The steady-state value of the ratio D(r)/fi(r) can be computed with (32) in the limit 
r e - :  

( D I N s  = (l/Nss +A&d'', (45) 
From (45) we see that generally the steady-state photon distribution P(N) is not 
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Poissonian. Consequently, the photon population has larger fluctuations. The fluc- 
tuations become negligible when stimulated emission decreases (A,+ 0). 

We obtain new information if we compute the distribution P(N)  by means of (38) 
and (23): 

P(N)  = A (N)(A 3/A 1 ) N  (46) 

where 

A(N) = ( ~ / N ! ) ( A , / A J ) ( A I / A ~  + l)(A2/A3 + 2) .  . . [A2/A3 + ( N -  111 

x (1 - A J A , ) ~ ~ ~ .  (47) 

P(N) = A(N) exp [(.UN - Nhv)/k,T] (48) 

A ( N )  = A(N)(B./Br + k /bBr) -N .  (49) 

By using (14), (16). (46) and (47) we find that 

where 

Equation (48) will be used in order to determine certain steady-state properties of the 
photon population. First, let us compute the entropy of the photons from (Landsberg 
1986) 

L 

S = -kB P(N) ln[P(N)]. 
N = O  

From (48) and (50) we obtain 
- 

S = -k,(lnA) + ( p / T ) f i  - ( l / T ) E  

where 

Now, we may use (51) and the Euler equation (Landau and Lifshitz 1967, p 187) 

E = T S - p V + p N  (55) 

p V =  -k,TlnA. (56) 

where p and V are pressure and the volume of the photon ensemble. We obtain 
- 

This is the equation of state of the photon population. Note that the equation of state is 
characterized by negligible fluctuations only when P(N)  approaches a Poisson-type 
distribution, i.e. when the stimulated emission becomes negligible (A3+ 0) (see the 
endof section 3). 
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Let us briefly analyse the case when the dissipation constant is weak ( k j 0 ) .  By 
taking into account that EL' = EiP = E , ,  from (15) and (16) we obtain A z  = A3. Then 
(47) gives 

and from (15), (16), (41) and (48) we obtain 
A(N) = 1 - A3/A ,  

p(N) = [1 - exPG - V G ) ]  exp[(wV - Nhv)/ks TI. 

(57) 

(58) 
In this case we u s e f j  1 (see (43)). Then, from (42) and (58) and using the normalization 
condition we find that 

P(N) = PA1 + KJI"I(1 + 7%)IN. 

P(N)  = exp[( -pV + pN - Nhv)/kB U.  

(59) 
As we see, P(N) is not a Poisson distribution. Another form of P(N) may be obtained 
using (54), (56) and (57) 

(60) 

p V =  kBTln(l  + f i s s ) .  (61) 
However, note that thisequation describesasystem with important fluctuations, because 
P(N)  is not Poissonian. In the case of a dilute system, 0 < N, S 1. Then, we can develop 
In(1 + ns) and we obtain 

The equation of state (56) has a simple form if we use (48), (54), (56) andf= 1: 

p V = k B f i ~ ~ T ( l - ~ ~ ~ / 2 + ~ ~ ~ / 3 -  ...). (62) 
Landau and Lifshitz (1967, p 188) show a nearly similar result in the case of a degenerate 
Bose gas in equilibrium. Note that Qs, e 1 implies in our case qG B p. 

5. Conclusions 

Inthispaperwestudiedasystemofcoupledphotonsandelectrons bytaking intoaccount 
the radiative transitions and photon dissipation. The main hypothesis that we accepted 
was the slaving principle for adiabatic elimination of electrons. This assumption is 
justified because the lifetime of photons is usually much greater than the lifetime of 
electrons. Consequently, the electrons obey instantaneously the 'orders' of the photons 
and the electron number n can be eliminated without increasing the degree of the time 
derivatives. The slaving principle allowed us toobtain a master equationdependent only 
on the photon number N. However, this equation depends indirectly on the electronic 
component of the system, by means of three parameters, namely A , ,  A 2  and A 3 ,  in 
equations (14)-(16). 

The main conclusions that we obtained are the following. 

(i) The photon population is stable when the absorption plus dissipation process is 
more intensive than stimulated emission. The two kinds of processes have equal rates 
at the laser threshold. In this case the photon relaxation time becomes infinite and a 
phase transition analogy holds. 

(ii) Fluctuations may cause the photon number to become zero. This is possible for 
both stable and unstable populations. A stable population may definitely disappear only 
when spontaneous emission is zero (i.e. when k = 0 and n = Ne - N, (see equation 
(15))). 
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(iii) Generally, the fluctuations are not negligible compared with the mean photon 
number. When stimulated emission is zero, the photon ensemble is globally stable and 
the fluctuations are negligible. When the spontaneous emission and the influence of the 
ambient are zero, the photon population is either stable or unstable, depending on the 
sign of A 3  - Al. In this particular case a first-order phase transition was explicitly 
established at the laser threshold (A3 = A  ,). 

(iv) We proved that the steady-state photon distribution is not Poissonian and is 
characterized by large fluctuations. The fluctuations become negligible only when the 
spontaneous emission and the influence of the ambient are much stronger than stimu- 
lated emission. 

(v) When dissipation is zero, an effective chemical potential of the photons was 
emphasized. 

(vi) The photon equation of state is given by (56). When dissipation is weak and 
dilution increases, the photon population has an equation of state similar to that of a 
degenerate Bose gas in equilibrium. 

Appendix 

The characteristic system attached to equation (U) is 

dt/l = &/(1 - s)(sA~ - A , )  = dF/A*(s - 1)F. (AI) 

By integrating equations (Al)  we obtain 

I ( s A 3 - A l ) / ( s - 1 ) 1 e x ~ I - ( A 3 - A ~ ) r 1 = C ~  (A21 

I F ( S A ~  - A ~ ) I A ~ A ~  =c2 (A3) 

where C, and C2 are constants. Equation (U) has the solution 

W(C,. C,) = 0 ('44) 

or, by using (A2) and (A3): 

F =  IsA3 -AlI-A2'A3g(l(~A3 -A,)/(s - l)lexp[-(A3 - A l p ] )  (A5) 

where Wand g are arbitrary functions. 
The form of g may be determined by using equation (26): 

F(s, 0) = S N ( 0 ) .  (A6) 

~ ~ ( 0 )  = ]$A3 - A,I-AdA~ g(l(sA3 -Ai)/($ - I ) / ) .  (A7) 

y = ~ ~ ( 0 )  IsA3 - A lAdA3, 

Then (A5) becomes 

We define 

(A8) 

Then! from equation (A7) we obtain 

x = g - I ( y )  = I(sAs -A,) /@ - l ) /  
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where g-' is the inverse of the function g. From (A9) we may write 

s = ( A ,  - g-') / (A3 - g - ' ) .  
Consequently 

sN@) = [ ( A ,  - g-') / (A3 - g- ' ) ]N(a) .  

By using again (A10) we find that 

S A ~ - A I = ( A I  - A 3 ) g - ' / ( A ~ - g - ' ) .  

From (AS), (All)  and (A12) we obtain 
y = [ ( A t  -g - ' ) / (A3  -g - ' ) lN 'a ' [ (A~  - A 3 k F 1 / ( A 3  - g  -1  ) I  A # ,  

but (A9) shows that 

Y = g(x)  g - ' ( y )  = x .  
Consequently, (A13) becomes 

g ( x ) =  [ ( A ,  - x ) / ( A ,  - X ) ] " ~ ' [ ( A ,  - A s ) x / ( A ,  -x)jAdA3. 

By using (A5) and (A15) we obtain equation (22). 
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